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A self-consistent formulation of physics at the classical level embodying Dirac's 
large numbers hypothesis (LNH) is developed based on units covariance. A 
scalar "field" cp(x) is introduced and some fundamental results are derived from 
the resultant equations. Some unusual properties of ~ are noted such as the fact 
that ¢p cannot be the correspondence limit of a normal quantum scalar field. 

1. I N T R O D U C T I O N  

This paper  is the first of a series which will develop a self-consistent 
formulation of physics embodying Dirac's (1937) large numbers hypothesis 
(LNH). Starting with the guiding principle of units covariance following the 
original suggestion of Dirac (1937), a measurable scalar "f ield" ~0(x) is 
introduced into standard physics in a self-consistent manner. The resultant 
field equations of classical physics are obtained and some fundamental  
results derived. 

It  must be emphasized at the outset that the mere existence of the large 
numbers discussed in Section 3 below does not require L N H  to be valid. 
For example Carter (1974) has shown that if these numbers differed 
appreciably in magnitude from their current values then we (humans) would 
probably not exist to speculate about LNH.  Further, Zel 'dovich (i977) has 
noted that within modern quantum field theory spontaneous topology 
change can readily give rise to large numbers comparable in magnitude to 
those of L N H  or even larger. 
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This series of papers makes no claim for the necessity of LNH. The  
attitude adopted here is that since LNH specifically violates many of the 
cherished ideas of physics the formulation of a self-consistent theory encom- 
passing LNH and still agreeing with all known observations can lead t o  a 
new understanding of the structure of standard physics. This in turn could  
enable one to examine the construction of quantum field theories f r o m  a 
radically different point of view. At each step of the way the existence o f  a 
self-consistent theory will allow specific observational tests to be developed. 

Finally, I point out that this theory and its predictions are qui te  
different from a superficially similar theory developed by Canuto, Adams,  
Hsieh, and Tsiang (1977a) and by Canuto, Hsieh, and Adams (1977b). "The 
differences will become more readily apparent in subsequent papers dealing 
with the observation of phenomena mediated by electromagnetic radiation. 

2. CONVENTIONS 

This series of papers uses the ( + ,  , , ) metric, a comma denotes 
partial derivative, a semicolon denotes coordinate covariant derivative, an 
asterisk denotes units covariant derivative normalized to G units, a double  
vertical bar denotes units covariant derivative normalized to A units, the 
curvature tensor is defined by 

(1) 

and the Ricci tensor is 

RXo ~ R"x~o (2) 

Greek indices run from 0 to 3 while Latin indices run from 1 to 3. 

3. LARGE NUMBERS HYPOTHESIS 

The large numbers hypothesis was first advanced by Dirac in 1937. 
Dirac noticed that while several pure numbers can be formed from the 
fundamental constants of physics, most are of the order of 137, 1836, etc. 
However, three such numbers are enormous. These are the ratio of the 
electric force to the gravitational force between an electron and a proton 

e2"/r2 = 0.22694(14)× 1040 (3) 
Gmemp/r 2 
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the ratio of the "radius of the Universe" to the classical electron radius 

<4, 
e 2// m e c2 

and the "number of protons in the universe" 

4 3 =0.0448N1080 ( o 0 ][  50] -37r(c/H°) (Om°/mP) ~ ]~ ~ 1 (5) 

Here H 0 is the observed Hubble constant in km/sec/Mparsec, o 0 is the 
observed density parameter and Pro0 is the matter density today. The 
numbers in parentheses in (3) indicate the estimated one-standard-deviation 
uncertainty in the last two digits of the main number (Kelly et al., 1980). 

Since H 0 decreases with the age of the universe the value of the second 
number is an accident due solely to our measuring H o today. The order-of- 
magnitude similarity between (4) and (3) led Dirac (1937) to suggest that 
perhaps this relation is not accidental. Dirac suggested that every large 
number with order of magnitude 1040 varies as the age of the universe. Since 
(3) contains only supposed constants this means that at least one of these 
"constants" must be variable. One is free to define fiducial units standards 
to be e and m e. Hence the gravitational "constant" G must vary inversely 
with the age of the universe relative to these atomic units standards 

G ~ t - '  (6) 

Similarly, the result (5) is interpreted as saying that the number of 
proton masses in the universe is increasing with the square of the age of the 
universe. Since the overwhelming majority of the number of different 
particles in the universe are protons this is interpreted as saying that the 
number of protons (matter quanta) in the universe is varying as 

Np~ t :  (7) 

Since 1937 two new numbers have been discovered. The first is the 
ratio of the "number of photons in the universe" to the "number of protons 
in the universe." This number became calculable after the discovery of the 
2.7 K black-body radiation (Penzias and Wilson, 1965). If this radiation 
truly is cosmological then it accounts for the vast majority of photons in the 
universe. Taking the ratio of the "number density of photons" to the 
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"number density of protons" gives 

3.7aTr3/ks 10,0 / 0.03 2[ Tr 13 
--1.28× , a0 ,2 .7 ,  PmO / m p  

(8)  

Here k s is Boltzmann's constant, a is the black body constant, and Tr = 2.7 
K is the radiation black-body temperature. One can interpret (8) as saying 
that the ratio of the number of photons to the number of protons in the 
universe is increasing as the fourth root of the age of the universe 

N T / N p  ~ t 1/4 (9) 

or with (7) 

Nv ~ t 9/4 (10) 

The second new large number is the ratio of the weak force between 
two weakly interacting masses (W bosons ?) and the gravitational force 
between these same two masses 

g o / R ~  _ Gw(h¢)  3 ~ G,~h~ ~ 
- = 44.052(27)× 1030 (11) 2 2 GM'~/R., G(MwRw) 2 G41r z 

Here g~ is the usual weak coupling constant of V -  A theory, G,, is the weak 
coupling constant of Weinberg-Salam (Kelly et al., 1980, p. 541), M~ is the 
weak particle mass, and R w is the range of the weak interaction. A 
fascinating numerical coincidence arises when (11) is multiplied by the 
fine-structure constant a and then compared with the 3/4 power of (3) 

Gwhc5 1030 (12a) a = 0.32146(20) × 
4rr2G 

e2 )3/4 
Gmem p = 0.3280(18)× 1030 (12b) 

The two numbers agree to within 2%! One can interpret (12) as saying that  
the weak coupling "constant" Gw is varying inversely as the fourth root 
of the age of the universe relative to atomic units standards (Dicke, 1957) 

Gw~t -1/4 (13) 
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4. GUIDING PRINCIPLE 

The point of this series of papers is to assume the validity of (6), (7), 
(10), and (13) and then to devise a complete dynamical formalism for 
physics which incorporates these phenomena. As stressed in the Introduc- 
tion, it has been pointed out previously that the existence of the large 
numbers does not necessarily require LNH. That is not the point. Standard 
physics is automatically violated by each of (6), (7), (10), and (13). By 
constructing a complete, self-consistent dynamical formalism for physics 
which includes LNH one can devise rational experimental tests of LNH. 
This is not possible without such a theory. Further, and perhaps more 
important, by constructing such a formalism one should be able to learn 
much about standard physics, especially at the quantum level where all 
these phenomena must originate. 

To begin development of such a theory first note that (6), (7), (10), and 
(13) each involve scalars in the tensorial sense (in fact, constant scalars). 
Thus the simplest possibility is to introduce a scalar field which will account 
for all the LNH phenomena, an approach utilized frequently in the past 
(Brans and Dicke, 1961; Deser, 1970; Dirac, 1973a; Freund, 1974). This 
scalar field will be called cp(x). For practical purposes it can be thought of 
as the gravitational "constant" G(x). 

Notice that it is totally wrong to take a preexisting theory such as 
Newtonian mechanics, set G = G(t) and then proceed to make predictions. 
This is because viable physical theories are tightly self-consistent logical 
structures. Making an arbitrary change in such a theory almost automati- 
cally guarantees a contradiction later within the internal structure of the 
theory. This is why all such attempts in the past have "proved" LNH to be 
wrong. In fact, all they really do is prove their own lack of self-consistency. 
I call such theories "naive Newtonian theories," and will often make 
comparisons between predictions of this self-consistent theory and predic- 
tions of the naive Newtonian theories. 

One seeks a self-consistent method to introduce qo. The guiding princi- 
ple has been discussed many times by Dirac (1937; 1973a, b; 1974). Notice 
that the large numbers (3), (4), (5), and (11) are ratios between microscopic 
or atomic quantities (e, h, m,, etc.) and macroscopic or gravitational quanti- 
ties (G, Pm =M/V).  Since one is always free to choose fiducial units 
standards, one can choose to define masses in terms of rn e, lengths in terms 
of e2/m,c ~, etc. The system of units standards based on such atomic 
quantities will be called A units. Alternatively, one could choose the mass of 
the sun, Me, to be the fiducial mass and GMo/c z to be the fiducial length. 
The system of units standards based on such macroscopic quantities will be 
caUed G units. 
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Clearly e, m e, h, etc. are all constant in A units by definition. Clead2¢ G 
and M+ are constant in G units by definition. Standard physics assumes 
that ratios of A units to G units are always constant. Dirac (1937; 1973a.,b; 
1974) pointed out that if this assumption is dropped then LNH could res~ult. 
Consequently, assume that Nature admits two natural units standards. Ira G 
units all classical (nonquantum) quantities have their usual form. This  
means that in G units macroscopic masses and charges and the gravitational 
constant are all constant. Further, in G units classical electromagnetic 
theory and classical gravitation are valid 

Fxo,~ + Fo~,; x + F~x; o = 0 

Fx°; a = 4rr°/*x 

Gx~ + Agxo = -8rrGTx~ 

(14a) 

(14b) 

(15) 

where c is the proper charge density and A is the cosmological constant. O n  
the other hand, in A units all atomic quantities have their usual form, i.e., 
h, me, e, rap, transition frequencies of atoms, etc., are all constant. One mus t  
fix up the mathematics to respect this principle. Hence one must create uni ts  
covariance and give it measurable dynamic significance. 

5. UNITS COVARIANT FIELD EQUATIONS 

A. General Formulation. The reader unfamiliar with the units covadant  
formalism should refer to the Appendix. There a units covariant formalism 
based on the two independent quantities of physics, mass and length (tinae), 
is developed. Notice that one is free to define length in terms of light travel 
time (c--1)  so that all physics does reduce to just the two independent 
quantities mass and length. 

Since we know the form of the field equations (14) and (15) in G uni ts  
one normalizes the scalar gauge field fl(x) so that when f l -  1 the uni ts  
covariant equations reduce to the G units equations (14) and (15). This  
means that the fiducial units are G units, i.e., 

d z = f l - ' ( x ) d z  c (16) 

is the required expression for time in arbitrary units in terms of time in G 
units. 

One could similarly introduce a second gauge variable X(X) to relate an 
arbitrary mass unit to G units as 

dM=x-1(x)dMG (17) 
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However, simplicity together with the form of LNH suggest that the effects 
of LNH be mediated by one scalar field, not two. Since the only reason for 
introducing units covariance is to indicate how the scalar field qo(x) should 
be inserted into the standard physics field equations, one can simplify the 
general units covariance by taking 

X(x) ~-[fl(x)] ' - g  (18) 

where g is some constant. Hence 

d M =  [/~(x)] g - '  dM G (19) 

is the required expression for mass in arbitrary units in terms of mass in G 
units. 

As noted in the Appendix every physical quantity must possess both an 
explicit tensofial nature and an explicit power (Dirac, 1973a). The power of 
any quantity A is determined from the units of A as 

I'I(A) = a --= a + b(1 - g) (20a) 

if 

[ a ]  = [ r l a [ M ]  b (20b) 

where [A] denotes the units of A. Hence the algebra of powers reduces to 
the algebra of dimensional analysis. For example, the power of G is found 
to be 

[G] = [ L I [ M I - '  = I I (G)  = 1 - ( 1 -  g )  = g (21) 

As noted in the Appendix a units covariant derivative (asterisk deriva- 
tive) (Dirac, 1973a) can be defined. It is related to the standard coordinate 
covariant derivative (semicolon derivative) through the normalization of 
B(x) 

/3(x) = 1 ~ * = ; (22) 

This allows one to use a semicolon-to-star rule to change any equation in 
coordinate covariant form into an equivalent equation in units covariant 
form. For example, the units covariant electromagnetism equations (14) 
become 

Vx°,, + Vo~,, x + F~x, o = 0 (23a) 

F x " , .  = 4¢ro/L x (23b) 
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However, the units covariant gravitational field equations are more subtle. 
From (15) one must replace the Einstein tensor Gxo with its units covariant 
equivalent form (A.15) to get (Dirac, 1973a) 

*Gx,~ + Ag~o = - 87rGTxo (24) 

Notice that in (23) and (24) all quantities are assumed to be in units 
covariant form. For example, from (21) one has 

G =  fl-gGG (25) 

where G c is constant by definition. Similarly, from (A.18), (A.21), and (24) 

II(Agx° ) = I I (A)  +2 = H(*Gxo ) = 0 (26) 

A =fl2A G (27) 

where A c is constant since (15) is valid in G units. Also, from (24), (A. 18), 
(A.21), and (21) one finds 

Since 

n ( r o ~ )  = n ( * G o ~ ) -  n ( c )  = - g 

H(To ~)= H(Tox) + H(g °x)= - g - 2  

U ( T  °x ) = H(To x)+ 1-[(g °x ) = - g - 4  

(28) 

(29) 

(30) 

(31) 

for electromagnetism one deduces from (31), (29), and (A.18) that 

H( Fo x ) = 2-tH(ro x ) = - 1 -  g / 2  (32) 

H( Fox)= H(Fo x)+ II(gox ) = 1 -  g / 2  (33) 

H ( F  °x) = H(Fo x)+  H(g  °x)= - 3 -  g / 2  (34) 

Hence (A.6) and (A.29) combined with (23) give 

(fl'-g/2Fxo);~, +(fll-g/2Fo~,);x +(f l l -g/ZF~x);o=O (35a) 

( f l l - g / 2 F X a  ) ; a = 4"rtfl I -g /2Ouh (35b) 



Large Numbers Hypothesis. I 615 

Just as in standard physics (35a) implies the existence of A x such that 

o -  

From (36a) the units of A x are the same as those of Fxa so 

I I (  A x )  = I I (  Fxo) = 1 - g / 2  

which means that (36a) can be written as 

Fxo = A x .  o -- A o ,  x 

(36a) 

(37) 

(36b) 

Equations (35) are the electromagnetic field equations written in explicit 
coordinate covariant form with arbitrary units (variable mass standards, 
rubber length standards, "poorly"  built standard clocks, etc.). 

B. Physics in A Units. Now consider an A clock, e.g., the period of 
vibration of an ammonia molecule. The readings of the A clock can be 
compared with the readings of a G clock, e.g., the orbital period of a planet 
about the Sun. Define 

(38) 

where d'r a is the time interval between two events measured by the G clock 
and d~ A is the time interval between two events measured by the A clock. 
From (16) this means that 

fl = 1 ,--, G units (39a) 

13 = ~ ,--, A units (39b) 

Since both G clocks and A clocks do exist this means that q0 is a measurable 
quantity. Thus all of the units covariant equations of classical physics can 
be written immediately in terms of A units by making the gauge choice 
fl = ~. f l ( x )  is a gauge variable and, like all gauge variables, is inherently 
unmeasurable. Fixing the gauge by choosing f l - - I  means that physics is 
described in terms of G units. Fixing the gauge by choosing fl = ~o means 
that physics is described in terms of A units. ALL OF THIS IS T R U E  IN 
STANDARD PHYSICS! 

In standard physics ~ is constant. Hence there is at most a constant 
factor difference between G units and A units. Dirac's suggestion concern- 
ing the existence of two natural units standards is equivalent to the assertion 
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that qo is not constant (Dirac, 1973a) 

(40) 

From (35) with fl =¢p it is clear that this immediately changes s tandard  
physics. Further, use of (A.15), (25), and (27) in (24) with fl = cp gives 

Gx° + 2 q°; ka - 4 q~' Xq°' ° c p  ~p2 gxo ( 2 Vlep ~p, pCp,llgo~,l__ 

= - 2 - ( 4 1 )  

for the gravitational field equation in A units which is radically different  
from the standard form (15). 

Many people have obtained the left-hand side of (41) by insisting that  
gravity be units covariant or scale covariant. However, most people did not 
apply the same requirement to the source terms on the right-hand side. I t  is 
imperative that the same requirements of units covariance or scale covari-  
ance be applied to the right-hand side of (41) as well as the left-hand side. 
The reason is that ~p cannot be a normal classical scalar field, i.e., the 
correspondence limit of the usual quantum scalar field. If cp were such  a 
field then ¢p would affect the kinematics of quantum systems. But this  is 
precisely what cp cannot do or the entire concept of A units being dynami-  
cally different from G units is lost. cp must be such that it affects the 
dynamics of quantum systems but not the kinematics of quantum systems, cp 
may cause transitions among quantum states but the states themselves m u s t  
be unaffected by cp. 

So far units covariance has been utilized to introduce cO into physics in 
a self-consistent manner. It has also been utilized to determine the var ia t ion 
of "constants" such as G or A when measured in A units. Now uni t s  
covariance will be used to determine the variation of atomic quantities such  
as e, me, h, etc., when measured in terms of G units. 

rn e is a mass and so has power 1 - g  by (19). In atomic units m e is 
constant. Hence any atomic mass is expressible as 

m = mA(fl/q)) g-' (42)  

where m is the mass in arbitrary units and m A is the constant mass i n  A 
units. Since h/mc is a length 

I I ( h )  = I I ( L )  + I I ( m )  = 1+ 1 -  g = 2 -  g (43a)  
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SO 

h = h,4 ( f l /~)  g-z (43b) 

where h is Planck's "constant" in arbitrary units and h A is the constant 
value of h in A units. Since e2/mc 2 is also a length 

II (e) = ½H(e 2) = ½H(h) = 1 - g/2 (44a) 

SO 

e = ea(fl/~ )- l  +s/2 (44b) 

In A units m, h, and e are constant as expected while in G units they are 
given by (42), (43b), and (44b) with fl = I. 

C. Units Covariant Variational Principle (Adams, 1979). In this section 
I give a units covariant variational principle for gravity and electromag- 
netism coupled to a charged perfect fluid. The energy tensor for the perfect 
fluid is 

TX°= (p + p )uXu° -pg  x° (45) 

where p is the isotropic fluid pressure and P is the proper energy density of 
the fluid. Notice that in the classical units covariant equations (23) and (24) 

nowhere appears. This will always be true since cp is derived by comparing 
atomic quantities with classical quantities and classical physics contains no 
atomic quantities by definition. Hence ~ will nowhere appear in the 
variational integral. 

Write 

I = I s +  I,,,,+ I,,+ t,~ (46a) 

lg =--.( 16rrG a)- t  f (*Rfl 2 - 2Aafl 4 )~/d4x (46b) 

Z¢,,,=_(16~)-' f Bzlg~'gOX(F.x-2A,,.x +2Ax,a)F~,fld4x (46c) 

zq =_ - f a,+/+'o u aa 'a'x (46d) 

im - f oam+' 'd'x (46e) 
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II(io) ~ m, I - I (F~o)=II(Ax)~f  

¢~- det(gx:) ,  l-[(o)=~s 

~.d~uns 

(460  

(46g) 

with g, m, f ,  and s constants to be determined. The power of the four-veloc- 
ity u a is found to be 

I I (u  a) = H(dx' 0 - II(d~') = - 1 (47) 

Notice that the power of I is zero. Hence I is automatically invariant reader 
an arbitrary units (gauge) transformation. Variation of I s, I.,,,, Iq, a n d  I,. 
gives 

8Ig=(16~rGG)-~f ( (fl2*G~,o + fl2Aog~,,,)Sg~'° 

+ (2j~*.R -- 81~ 3A G )Sj~ } i[d4x (48a) 

8Iem = ( 1 6 ~ ) - ' f  {2flZf[ F~X(2Ax.o --2Ao.x - Fxo) 

+¼gaoF~X(2A.,x-2Ax..--F~x)]Sg "° 

+ 4flZ/F"X.x SA,, + 2fl2/g"~'gX°( F,~x - A~. x + Ax.,,)SF~o 

+2ffl2i-l[2A~,FX.x + F<'X(Fax--A<~.x + Ax.<,)]Sfl}¢d4x (48b) 

84= f 
- -  fill+:+ 2oA<iu'~Sfl } Ca4x (48c) 

U a ~1 - -  8I,,,=S(flm+4[(O+P) x,,,U P . . ( 8  x uaux)]Sx x 

+ ½fl,,,+4[(p + p)u~,Uo - -  pg~,o] 8g ~'~ -- B m+ 3(0 - 3p)SB } ¢d4x 

(48d)  

Writing 8 1 =  6Ig + 8I~m + Big + 8I m and setting the coefficients of the 
independent variations equal to zero gives the field equations. From 8F~o 

F~. = A~,o-  Ao,~ (49) 
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From 8A~ 

619 

F~,X,x = 4~rflS + 3-/o u ~' (50a) 

s = f -  3 (50b) 

where (50b) stems from the usual condition that the field equations have no 
explicit dependence on the gauge variable fl when written in units covariant 
form. From 8g ~" 

*G,o+ Aafl2g~o = -8~rGa(flm+2[(p + p)u~.Uo-p&,, ,]  

+flz/-2[F~XFxo-¼g~,oF,,XFa~']/47r} (51) 

The equivalence principle [EiStvOs-Dicke-Braginsky experiment (Misner, et 
al., 1973)] requires 

m + 2 =  2 f - 2  (52) 

since matter and electromagnetism must couple to gravity in the same way. 
Thus 

*G+,. + Ag. .  = - 8~'GT~. (53) 

requires 

or 

A = A~fl 2, G = G~fl 2/-~ ~ Gcfl -g (54) 

f = 1 -- g / 2  (55) 

so (50b) and (52) give 

s-= - - 2 - - g / 2 ,  m =  - - 2 - - g  (56) 

consistent with what was learned previously. From 3x x 

( p + p ) u~',x u x = p ,x(g  ~'x - u~" u x) + o uX Fx ~ (57) 

where (50b), (55), and (56) were used. Equation (57) is recognized to be the 
units covariant Euler equation for a charged fluid. Finally, the 8]3 variation 
gives 

*R - 4 A  = 8~rGT x (58) 
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where (49), (50), (55), and (56) were used. Equation (58) is not an indepen- 
dent equation for/3 since it is just the trace of (53). This is consistent wi th  
the well-known condition that a gauge-covariant theory does not admit field 
equations for the gauge functions. 

D. Measurability of ~. I emphasize that q0 is directly measurable 
whereas the gauge function/3 is not. All measurements are in fact rat ios of 
similar quantities. An unknown mass is balanced by a certain number  of 
standard masses. An unknown length is a certain number of s tandard  
lengths. Hence the units of-mass, length, time, etc. (the power of the 
quantity being measured) divide out (the measurement has zero power since 
it is a pure number). Consequently, such a ratio will never contain/3, i .e.,/3 
is inherently unmeasurable. 

However, such a ratio can contain q0. If a classical mass is measured in 
terms of atomic mass standards ~0 will appear in the result. This is precisely 
what is meant by using A units or by the atomic gauge/3 = tp. Hence  to 
measure q0 one seeks a necessarily A unit measurement of a necessarily G 
unit object. 

Precisely this situation arises in gravitationally induced quantum inter-  
ference experiments (Colella et al., 1975). What is measured is the 
quantum-mechanical phase shift of atomic particles (neutrons) caused by 
their interaction with a gravitational field. In effect, one measures G i_n A 
units. Ideally, one could count out 106 moles of 56Fe atoms and form them 
into a sphere in space. One could then determine the gravitational constant  

G( ti) = Go(%/q~( ti)) s (59) 

at different times t~ separated by, say, 106 years. Each time the experiment is 
performed one could set it up so that 106 moles of 56Fe are used and  the 
neutron beam paths are the same (this eliminates any complications d u e  to 
matter replication, etc.). Then 

q~( ti)//cp ° = [ Go/G(  ti)] l/g (60) 

which determines q~ to within a constant factor if g has been determined 
independently. 

6. LNH AND THE FORM OF 

So far there is no way to determine cp theoretically. Since cp is not (and  
cannot be) contained in the variational integral (46) there is no possibility of 
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obtaining a field equation for (p from classical physics. However, the form of 
LNH given by (6) and (7) can be used to estimate a form for qo(x). Since 

uA = r-gc  = c0(r/ 00) (61) 

from (25) one can use (6) to find 

( ~p/Opo)g = t / to (62) 

where t is (comoving) cosmic time in A units and t o is the value of t today. 
In order to determine g one uses (7) together with (19) and (42). The 

number N m of atomic masses m in a classical mass M is 

N m = M / m  = M c B g - l / m A ( ~ / ~ p )  g - I  = Nmo(Cp/Opo) g - '  (63) 

One could use (7) directly to find g. However, an additional factor enters 
here. When Dirac proposed (7) he pointed out that LNH does not indicate 
where matter is being created. There are three possibilities (Dirac, 1973b): 
(i) Matter is replicating (multiplicative creation); (ii) matter is being created 
uniformly throughout all space (additive creation); (iii) matter is being 
created at certain preferred points in the universe, e.g., galactic nuclei (local 
creation). If additive creation holds then since the universe is mostly empty 
the amount of matter being created in the vicinity of matter already present, 
in say, 10 l° years is almost zero everywhere. Hence (63) would be almost 
constant, i.e., g ~- + 1. If local creation holds then the amount of matter 
being created in the vicinity of matter already present in 101° years is zero 
almost everywhere. Again (63) would be constant, i.e., g = + 1. However, if 
multiplicative creation holds then (63) should vary like (7). Combining with 
(62) gives g = - 1. In summary we have the following: 

Additive or local creation: 

g = + 1, op/op o ~ t / t  o (64) 

Multiplicative creation: 

g = - l ,  r /q00--  t 0 / t  (65) 

I will show in Paper II of this series that there are compelling reasons 
to believe that g = - 1 (multiplicative creation) if this formalism is valid at 
all. 
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7. NEUTRAL PERFECT FLUIDS 

In this section I discuss properties of neutral perfect fluids in the units 
covariant formalism. The energy tensor for a perfect fluid is given by (45). 
II(O) = I I ( p ) =  - 2 - g  from (56) consistent with 0 being a mass pe r  unit 
volume. In standard physics one deduces the equations of motion for  a 
perfect fluid from TXa; ~ = 0 which follows from Einstein's equation (1 5). In 
this formalism one uses (24), (A.16), (A.22), and (A.23) to deduce the units 
covariant analog 

TX~,~----0 (66) 

Substitution of (45) into (66) yields 

(p + p)u,..u°= p . , -  [(p + p)u°].ou. 

From UpU p = 1 one has 

(67) 

uPuo,~=0 (68) 

as in standard physics, so contraction of (67) with u p gives 

[ ( p +  p)u '~] ,~ ,=p, , ,u  " 

( p  + p ) u X , , , u  ,, = p, , ,(gX~, _ uXu,,) 

(69) 

Equations (69) and (70) are the generalized energy and Euler equation in 
units covariant form. In the limit of negligibly small pressure forces these 
become 

Use of (A.8) and (A.27) gives 

(pu'),~=0 (71) 

uX,,,u ~ = 0 (72) 

(#l-gt, ua); =0  

u~: ~u a = ~ (g~° - u~u~) 

in explicit covariant form in arbitrary units. 

(73) 

(74) 

and (67) becomes 

(70) 
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Equation (73) leads back to the matter equation (19) since it implies 

f fll-gOu o dV = const (75) 
t = const 

and for fl = f l ( t )  

M =  Mo(fl/flo) g-~ (76) 

Since M = N m where m is an atomic mass (42) and (76) give 

Nm = Nmo(ePl~Po)Z-I ~ N,,o( t / to) , -1 /g  (77) 

from (62). Hence the number of atomic particles in a classical mass 
increases or decreases as g - ~ <  1 or g - i >  1, respectively. This shows how 
particle replication is built into the theory [which is of course, based on (19) 
and (42)]. 

Equation (74) is called the in-geodesic equation by Dirac (1973a). It is 
the equation of motion for free test particles in arbitrary units. In G units it 
reduces to the usual geodesic equation as expected. In A units (74) shows 
that in a frame where q~=~(t )  (which always exists in an isotropic, 
homogeneous universe) in the Minkowski space-time limit (gx, ~ ~xo) the 
physical velocity of a particle measured in A units satisfies 

10 = "Y0V0~0(fp 2 "~- ~02t902~002) - I / 2  (78a) 

y2 = 1 + yo2Vo2(~0o/Cp) 2 ~ 1 + yo2Vo2(tolt) 2/g (78b) 

where Y0 =Y(t0), etc., and (62) was used. Hence a free particle whose 
velocity is measured in A units should spontaneously slow down or speed up 
according as g > 0 or g < 0, respectively. The acceleration of such a particle 
is found to be 

a =  q v 1 v 
- - -  - -  - ~  - -  ( 7 9 )  

~0 r 2 ( - - g )  t y  2 

8. CLASSICAL CHARGED MATFER 

The field equations for classical charged matter in arbitrary units are 
the units covariant Maxwell equations (23) together with (57). In the limit of 
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negligible pressure (57) becomes 

p uX,, ,u '~ = o u"F~ x (80a) 

o r  

~ u  F ~x uX u~= (gX~-uXu~)+p (80b) 

Clearly (80a) is the units covariant generalization of the Lorentz force 
equation, while (80b) illustrates how the Lorentz force term adds on t o  the 
free particle in-geodesic equation. From the form of (80b) in A units 
([3 = ~o) it is clear that the first term on the right acts as a sort of generalized 
cosmic force. In fact it originates in the microstructure of space-time as  will 
be shown in a future paper. 

Equation (23b) implies 

( o u ° ) , . = 0  (81) 

due to the antisymmetry of F x~ together with (A.27) and (A.29). F rom (56) 
and (A.27) this gives 

= 0 (82) 

as the law of charge "conservation". Equation (82) implies 

f [31-g/2ouO d V =  const (83) 

t = const  

and for fl = f l ( t )  

Q = Qo([3/[3o ) - i  + g/z  (84) 

where Q is classical charge. The power of Q is consistent with (44a) as 
required. Since Q = c A N  where e is a proton charge and AN is the net 
charge number, (84) and (44b) give 

AN= ANo(ePl~Po)- '  +g/2 ~_ A U o ( t / t o ) , / z - , / g  (85) 

from (62). Hence the net number of atomic charges in a classical charge 
increases or decreases as g -  l < 1/2 or g -  i > 1/2, respectively. Comparison 
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with (77) shows that this is an unexpected result because it predicts that net 
charge creation and particle creation do not occur at the same rate. 

However, from (77), (85), and (62) one finds 

Q _ Qo (cp/epo)-g/2 _  oo(to/t)l/2 M Mo (86) 

so that in A units a classical charge-to-mass ratio continuously decreases. 
Consequently, this theory does not admit perfect replication of matter since 
otherwise the charge-to-mass ratio would be constant. Hence, the presence 
of one particle type must affect the creation rate of other particle types. 
Note that the suggestion that particle replication rates depend on environ- 
ment is not so ad hoc as it seems, since the particle replication rate of a 
system of completely degenerate fermions must be zero in order that the 
Pauli principle not be violated. 

9. DISCUSSION 

I have presented details of a formalism which sensibly allows one to 
incorporate LNH into physics at the classical level. By examining progres- 
sively less classical systems one expects to be able to trace the effects and 
origin of cp down to the quantum level, cp(x) is a scalar "field" for which no 
field equation can (or should) exist at the classical level since cp is a 
manifestation of an effect operating solely at the quantum level, rp cannot be 
merely the correspondence limit of a standard quantum field for otherwise it 
would affect quantum kinematics. This it must not do in order that the 
dynamical significance of and differences between A units and G units be 
preserved, cp can be allowed to affect only the standard quantum dynamics, 
i.e., ep causes transitions among quantum states but does not affect the states 
themselves. 

The sole purpose of the units covariance approach is to allow a 
rational, self-consistent introduction of a new scalar field cp into physics. 
Since laboratory measurements are made using A units almost exclusively, 
the units covariant equations should be evaluated with fl = ~0. This leads to 
the conclusion that G and A vary and that free particles follow in-geodesics. 
In general one finds that the existence of ~p means that systems do not 
conserve energy in A units. It is as though all matter in our universe is 
weakly coupled to a large energy source or sink (depending on the value of 
g). This point will be developed in Paper III on thermodynamics. 

Almost all previous papers attempting to incorporate LNH into physics 
fail because they treat rp as a normal scalar field (for example, Bekenstein, 
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1977, and papers cited there). Hence, these previous papers break units 
covariance (or scale covariance as some call it) in order to obtain field 
equations for rp. (For example, this theory is a singular ~ = - 3 / 2  case  of 
Brans-Dicke.) As soon as this is done the dynamical differences between A 
units and G units disappear. 

Notable exceptions to this are the original works by Canuto, Adams, 
Hsieh, and Tsiang (1977a) and by Canuto, Hsieh, and Adams (1977b) wvhich 
has been applied by Canuto and co-workers (Canuto and Hsieh, 1979; 
Canuto et al., 1979; Canuto and Owen, 1979). While these formulationts are 
superficially similar to this theory there are major differences in results. This 
theory uses units covariance (called scale covariance in the above papers) as 
a means to self-consistently insert ~0. At no time will explicit units covari- 
ance ever need to be broken. Hence equations such as (42), (43b), and (44b) 
are obtained which do not exist in the above papers. The biggest difference 
arises in the treatment of radiation. Because of its importance this is 
discussed separately in Paper II. 

Finally, one vital point must be repeated. It is fruitless to try to show 
that some particular theory disagrees with observation by using a different 
theory as an intermediary. This could be similar to "disproving" stantdard 
thermodynamics through use of the theory of caloric. 

Two examples from the recent literature will suffice to illustrate this 
point. In the first example (Barrow, 1978) an attempt was made to rule out 
the scale covariant theory of Canuto et al. (1977a) and other theories by 
showing that cosmological nucleosynthesis in the early universe severely 
restricts the possible temporal variation of G. This was a worthy effort  
except that standard physics [with G(t)] was used instead of the theory 
being tested. In fact, the theory in question makes no claim to being 
sufficiently developed to be able to calculate cosmological nucleosyntlaesis 
in the early universe. 

In the second example (Mansfield and Malin, 1980) the scale covariant 
energy equation similar to (69) was applied to degenerate stars and severe 
difficulties in understanding certain observations were obtained. However, a 
degenerate star, or any degenerate quantum system, is precisely the kind of 
system for which (69) would be expected to fail. Equation (69) stems from 
LNH in the form (19) and (25) (with fl = ~). While (25) may still hold in 
degenerate quantum systems, (19) most assuredly will not. Since most  
matter is fermionic a degenerate system of fermions cannot replicate due  to 
the Pauli principle (except possibly at the top of the Fermi sea). How this 
would modify equation (19) is anybody's guess. Consequently, any conclu- 
sions drawn from such an application of (19) are almost guaranteed t o  be 
false. 
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APPENDIX: UNITS COVARIANCE 

As stressed in the body of this paper units covariance has no physical 
content of and by itself. Units covariance is an explicit statement of the fact 
that physics is independent of the particular set of units standards used. In 
this sense it is completely analogous to coordinate covariance which is an 
explicit statement of the fact that physics is independent of the particular 
set of coordinates used. Coordinate covariance can be explicitly introduced 
into special relativity through the "comma-to-semicolon rule," which in no 
way affects the physical content of the theory. Similarly, units covariance 
can be explicitly introduced into general (or special) relativity through the 
"semicolon-to-star rule" which in no way affects the physical content of the 
theory. 

All physics is ultimately based on F = ma. Hence there are precisely 
three independent units in physics, mass, length, and time. Defining units of 
length in terms of light travel time (setting c--= 1) reduces the number  of 
independent units to two, mass and time (length). Introduce a gauge 
variable f l (x)  to keep track of variable time standards. Then an arbitrary 
time standard is related to a fiducial time standard by 

d*=-- f l - t (x)d 'rr  (A.1) 

Similarly, one can introduce a second gauge variable X(X) to keep track 
of variable mass standards. Then an arbitrary mass standard is related to a 
fiducial mass standard by 

dM ~ X - ' ( x )  dM F (A.2) 

To determine the units transformation properties of any quantity A 
simply determine the units of A as 

[A] = [Tla[MI b (A.3) 
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Then in a system of arbitrary units standards one has 

A = fl-ax-bA F (A.4) 

The quantity A is said to have fl power a and X power b and one writes 

a = YIa(A), b = 1-Ix(A ) (A.5) 

Every physical quantity must possess both an explicit tensorial na tu re  and 
explicit fl and X powers. The algebra of powers reduces to the a lgebra of 
dimensional analysis. 

Just as one must introduce a semicolon derivative to preserve coordi-  
nate covariance, so too must one introduce a star derivative to preserve 
units covariance. Note that any coordinate has power zero. This is because 
coordinates are just markers in space-time and have no units associated with 
them. The unit of time (length) normally associated with coordinates is 
actually carried by the metric tensor g~o. Consequently, the units covariant  
derivative of a quantity must have the same power as the original qualatity. 

Define the symmetric affinity 

(A.6)  

where FJ~o is the Christoffel symbol of Riemannian geometry. Then the units 
covariant derivative is the same as the coordinate covariant derivative of 
Riemannian geometry with *F~o replacing F~a except for two addit ional  
terms involving power. Thus 

A,,,= A,o + aA ~--~ + bA X'° (A.7)  
X 

A~',o= A ~' o + AO*F~o + aAt '-~ + bA~'X, " 
' X 

(A.8) 

A~',,,x=A~'o,x+AOo*F~x-A~*F~x+a,4~ff-~ +bA~ x,x 
X 

(A.9)  

where a and b are the fl and X powers of the tensor A in each case. 
Generalization to higher-rank tensors is straightforward. The star derivative 
as defined above does preserve units covariance as may be readily checked. 
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Just as in Riemannian geometry one finds that star derivatives do not 
commute. One defines the units covariant curvature tensor *R~xvo to be 

*R%o =- * r % ,  o - * r,~o, v + *r  %* r;o - * r % * r %  (A.10)  

*R~xvo = R~xvo + ( 8~8~ - g~°gvx)(ln fl );o o -(~$8~ - g~'Ogox)(ln fl );o v 

+[8~'~-~¢ ~ ~ 1 ~  ~ ~° ~ ~, g~v-fl- - g~°-ff- ) g"° B° 

+ (Sv~g,, x _ 8$gvx)gO,~ fl, o fl,~ (A.11) 
13 /3 

and finds 

At,r  ° - A~',o r = *R%roA x (A.12) 

*R~xyo has the same index symmetries as R"xvo. Notice that star derivatives 
do not commute even in flat space-time (R~xvo ----0) due to the fl-dependent 
terms of (A.11). The associated contracted tensors formed from (A. 11) are 

*Rx,,==---*R~'x~,o=Rxo+2-~-z4fl'xfl~' ( - - ~ - f l ' P f l ~ ' m  ,1 - 

(A.13) 

*R -- gX°*Rxo = R +6  fflfl fl (A.14) 

There is a unique second-rank tensor formed from (A.13) and (A.14) 
with the property that its star divergence vanishes 

*Gxo=--*Rxo-½gxa*R=Gxo+2 --4 fiE 

Off fl.ofl.~ gO, ) (A.15) 
- gxo 2 fl f12 

*GX%o ---- 0 (A.16) 
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which is the units covariant analog of the Einstein tensor. One also h a s  the 
units covariant analog of the Bianchi identity 

*R~xvo,0 + R Xoo*r + R apt*,--  0 (~A.17) 

The powers of various geometric quantities are 

Hp(f l )  ~ --1 (A..18a) 

IIp(gxo) ~ +2 ,  Hp(gX°) = - 2  (A.18b)  

II¢(*R"xpo) = 0, Hp(*Rx,)  = 0 (A.19)  

II~(*R) = - 2 ,  IIp(det(gxo)) = + 8  (A.20)  

IIo(*Gx° ) = O, Hp(*G a°) = --4 (A.21)  

with II× = 0 in each case. The/3 and X powers of any pure n u m b e r  are 
always zero. These powers lead to the following important relations: 

/3.o ~ 0, [ f ( f l ) ] . o  ~ 0  (A.22)  

gox*p = 0, gOX,p -- 0, ~x*p ----- 0 (A.23)  

where f ( f l )  is an arbitrary continuous function of fl and 8~ is the Kronecker  
delta. 

Simplicity and LNH suggest that only one gauge variable is sufficient 
for our purposes, not two. Hence, define 

X(X) -------[fl(x)] ' - s  (A.24)  

where g is a constant, fl(x) is now the gauge variable which explicitly 
accounts for variable units standards. Instead of/3 power and X p o w e r  one 
has just power where if (A.4) holds then 

l'I( A)=a + b(1- g)-~a (A.25) 

Everything that was outlined above is unchanged except that fl p o w e r  
equals power and X power equals zero, i.e., in (A.7)-(A.9), a = a and b = 0. 
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The following relations will be found to be useful 

A,o 

A-,. 

A x ° . .  = - / ~ - " - 6 ( / ~ a + 6 A h " ) ;  ° - -  

Aho,a = t ~ - a - 4 (  ~a+4Aha): a if A x° = - A "x 
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i f  A x° = A ~x 

(A.26) 

(A.27) 

(A.28) 

(A.29) 

where a is the power of the tensor A in each case. Note that, for example, 

II(AX)=l-I(gX°A,,)=II(gX°)+II(Aa)=II(Ax)--2 (A.30) 

Finally, it is often useful to use a second fiducial standard. In this case 
fl must be rescaled accordingly. In this series of papers I use the double 
vertical bar to denote units covariant derivatives where the fiducial stan- 
dards are A units (fl ~-~). Then AXtlo is defined just like Ax.° except that in 
equations (A. 1)-(A.29) above fl is everywhere replaced by fl/cp. Hence 

f l = l  ~ A x . o = A  x (A.31) ;o 

fl = ~p = AXtt, = A x (A.32) ;o 

and, for example, (A.27) becomes 

Aall ° =. ( f l / ~  ) - a - 4[( f l / /~  )a  + 4AO]; ° ( A . 3 3 )  
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